Random sampling of sparse trigonometric polynomials
نویسندگان
چکیده
منابع مشابه
Random Sampling of Sparse Trigonometric Polynomials
We study the problem of reconstructing a multivariate trigonometric polynomial having only few non-zero coefficients from few random samples. Inspired by recent work of Candes, Romberg and Tao we propose to recover the polynomial by Basis Pursuit, i.e., by l-minimization. Numerical experiments show that in many cases the trigonometric polynomial can be recovered exactly provided the number N of...
متن کاملDeterministic Sampling of Sparse Trigonometric Polynomials
One can recover sparse multivariate trigonometric polynomials from few randomly taken samples with high probability (as shown by Kunis and Rauhut). We give a deterministic sampling of multivariate trigonometric polynomials inspired by Weil’s exponential sum. Our sampling can produce a deterministic matrix satisfying the statistical restricted isometry property, and also nearly optimal Grassmann...
متن کاملRandom Sampling of Multivariate Trigonometric Polynomials
We investigate when a trigonometric polynomial p of degree M in d variables is uniquely determined by its sampled values p(xj) on a random set of points xj in the unit cube (the “sampling problem for trigonometric polynomials”) and estimate the probability distribution of the condition number for the associated Vandermonde-type and Toeplitz-like matrices. The results provide a solid theoretical...
متن کاملRandom Sampling of Sparse Trigonometric Polynomials, II. Orthogonal Matching Pursuit versus Basis Pursuit
We investigate the problem of reconstructing sparse multivariate trigonometric polynomials from few randomly taken samples by Basis Pursuit and greedy algorithms such as Orthogonal Matching Pursuit (OMP) and Thresholding. While recovery by Basis Pursuit has recently been studied by several authors, we provide theoretical results on the success probability of reconstruction via Thresholding and ...
متن کاملRandom Trigonometric Polynomials with Nonidentically Distributed Coefficients
This paper provides asymptotic estimates for the expected number of real zeros of two different forms of random trigonometric polynomials, where the coefficients of polynomials are normally distributed random variables with different means and variances. For the polynomials in the form of a0 a1 cos θ a2 cos 2θ · · · an cosnθ and a0 a1 cos θ b1 sin θ a2 cos 2θ b2 sin 2θ · · · an cosnθ bn sinnθ,w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied and Computational Harmonic Analysis
سال: 2007
ISSN: 1063-5203
DOI: 10.1016/j.acha.2006.05.002